Развитие электроэнергетики в россии - реферат

Роль энергетики определяется местом в экономике. ТЭК России - круп­нейший инфраструктурный комплекс.

Электроэнергетика играет в ТЭК ключевую роль, является в ней интег­рирующей подсистемой. Она выступает как преобразователь практически всех видов первичных топливно-энергетических ресурсов (ТЭР). Электроэнергети­ка - это наиболее удобный и универсальный энергоноситель для удовлетворе­ния производственных, социальных, бытовых и других энергетических по­требностей общества. Мировые тенденции таковы, что доля электроэнергии в потреблении ТЭР неуклонно возрастает и будет возрастать в дальнейшем. В стратегическом плане электроэнергетика решающим образом влияет на фор­мирование условий для подъема экономики России и укрепление ее экономи­ческой безопасности. Все это определяет исключительно важное значение электроэнергетики, ее нормального функционирования и развития для обеспе­чения энергетической и национальной безопасности России и ее регионов в экономическом, научно-техническом, внешнеэкономическом и других аспек-

Основу производственного потенциала российской электроэнергетики в настоящее время составляют более 700 электростанций общей мощностью свыше 200 ГВт и линии электропередачи всех классов напряжений протяжен­ностью около 2,5 млн. км. Более 90 % этого потенциала сосредоточено в Еди­ной энергетической системе (ЕЭС) России, являющейся уникальным техниче­ским комплексом, обеспечивающим электроснабжение потребителей на боль­шей части обжитой территории страны.

Функционирование и развитие ЕЭС России обеспечено богатейшими то­пливно-энергетическими ресурсами природного газа, нефти, угля, ядерного топлива, гидроэнергией и другими возобновляемыми источниками энергии. Настоящий период характеризуется накоплением проблем в электроэнергети­ке, от решения которых будет зависеть не только энергетическая, но и нацио­нальная безопасность страны в первой четверти XXI века.

В последние годы в электроэнергетике России неуклонно обостряется проблема физического и морального старения оборудования электростанций, тепловых и электрических сетей.

Темпы воспроизводства основных фондов в электроэнергетике резко снизились.

Объем капитальных вложений в 2001 году по сравнению с 1990 годом уменьшился в 3,1 раза, а ввод мощностей снизился в 4,6 раза.

Если на начало 1991 г. доля генерирующего оборудования, проработав­шего более 30 лет, составляла 13,3 % от суммарной установленной мощности ЕЭС России, то на конец 2000 г. она выросла более чем в три раза и составила 46,1 %. При существующих темпах демонтажа старого оборудования и ввода новых мощностей к 2010 г. выработает свой ресурс более 70 % генерирующего оборудования. Аналогичную картину представляет износ основных фондов электросетевого оборудования. Оставшиеся мощности уже к 2006 году не смо­гут обеспечить электропотребление соответствующее уровню 1998 года.

Наметившаяся минимальная тенденция роста в 2002 году потребления (рис. 1.1) еще более приблизит появление дефицита энергии.

В ближайшее время требуется провести работы по реновации 450 турбоустановок высокого давления, 746 котлов с рабочим давлением бо­лее 100 атмосфер, паропроводов общим весом свыше 20 тыс. тонн.

Старение оборудования и низкие темпы его реновации послужили при­чиной возникновения ряда проблем.

Одна из них - накопление изношенного оборудования. Следствием этого являются:

Рост затрат на его ремонт (до 200 %);

Ухудшение технико-экономических показателей работы электропред­приятий (удельных расходов топлива, расходов электроэнергии на соб­ственные нужды, потерь электроэнергии в сетях). В результате предпри­ятия РАО ""ЕЭС России" недополучают более 4 млрд. рублей в год;

Другой проблемой является недостаточность существующих источников финансирования, требуемым объемам реновации.

На период 2000-2005 гг. ежегодная потребность в финансовых ресурсах для выполнения требуемых объемов реновации основных фондов составляет 50 млрд. рублей.

В настоящее время финансирование работ по реновации электрообору­дования от имеющихся источников (амортизация и прибыль на инвестиции) составляет всего 50 % потребности. Следствием этого являются:

Недостаточный объем работ по реновации основных фондов;

Сокращение, замораживание НИОКР в области технического пере­вооружения;

Отсутствие новых конструкционных материалов для современных энер­гоустановок;

Отсутствие готовых к серийному выпуску образцов современного энер­гооборудования для замещения вырабатывающего ресурс по значитель­ной части мощностного ряда.

Для обеспечения потребности в энергии отраслей экономики и населе­ния страны, реализации перспективы экспорта электроэнергии, повышения эффективности энергопроизводства необходима работа по воспроизводству основных производственных фондов электроэнергетики в объемах, обеспечи­вающих необходимую рабочую мощность.

Приоритетным направлением является техническое перевооружение, при котором стоимость 1 кВт вводимой мощности на 30-50 % ниже, чем при новом строительстве.

Учитывая, что наработка части турбоагрегатов позволяет продлить ре­сурс на 30-50 тыс. часов, а также то, что в настоящее время отсутствуют тех­нологически отработанные, доведенные до промышленного применения об­
разцы энергоустановок, в которых применяются современные технологии, предлагается следующая схема реновации энергооборудования.

Приоритет работам по продлению срока службы энергоагрегатов и замене отработавших ресурс энергоустановок на аналогичные (с улучшенными характеристиками);

Технологическая отработка головных образцов энергоустановок, в которых применяются современные технологии.

Преимущественное внедрение современных технологий;

Сокращение объемов замены на аналогичное оборудование.

1. Проведение необходимых научно-исследовательских, опытно - конструкторских и проектных работ в области реновации.

2. Организацию разработки и внедрения мер и перспективных технологий по продлению ресурса энергооборудования.

3. Организацию разработки и внедрения современного энергооборудова­ния для замещения выработавшего ресурс.

Для ТЭС, работающих на газообразном топливе: бинарный парогазо­вый цикл или газотурбинные надстройки паросиловых агрегатов.

Для ТЭС, работающих на твердом топливе: сжигание топлива в котлах с циркулирующим кипящим слоем.

Для ТЭС, сжигающих любой вид органического топлива: паросиловые блоки, работающие с ультрасверхкритическими параметрами пара (с перспективными системами подогрева питательной воды, с современными материалами котлов и турбин и другими усовершенствованиями).

Предлагаемые конструкции должны иметь КПД не менее 45 %.

4. Определение базовых электростанций для отработки головных образцов энергооборудования.

5. Разработка и промышленное освоение производства новых конструк­ционных материалов.

Для реализации проектов современных энергоустановок требуются но­вые материалы, применение которых позволит:

Повысить показатели и соответственно увеличить КПД;

Снизить материалоемкость конструкций;

Увеличить ресурс работы оборудования;

Снизить эксплуатационные расходы за счет снижения объемов контроля металла.

6. Создание системы инжинирингового обеспечения реновации.

Реализация комплекса необходимых мер позволит:

Обеспечить надежное энергоснабжение потребителей России;

Увеличить экспорт электроэнергии;

Повысить эффективность энергопроизводства.

Мы должны готовить себя к энергетической революции - может быть, в XXI веке в энергетику придут термоядерные электростанции. Путь от идеи до массового внедрения занимает в энергетике примерно полвека. Первые опыты по термоядерному синтезу проведены в пятидесятые годы XX столетия. Так, может быть, начало нового тысячелетия принесет нам новые, экологически чистые термоядерные электростанции? Будем надеяться на это. Но все же традиционные методы получения энергии будут занимать основное место в энергетическом балансе. Поэтому задача ученых - усовершенствова­ние этих традиционных технологий, превращение их в экологически более чистые, экономичные.

Ученые считают, что преобразование облика энергетики XXI века будет определяться такими достижениями научно-технического прогресса, как кера­мические двигатели, высокотемпературная сверхпроводимость, плазменные технологии, новые атомные реакторы, новые, более эффективные способы сжигания угля и, наконец, возобновляемые источники энергии. В этих облас­тях науки и техники огромное поле деятельности для будущих ученых и ин­женеров.

Российская электроэнергетика оснащена отечественным оборудованием, располагает значительным экспортным потенциалом, обладает развитым на - учно-техническим отраслевым комплексом, квалифицированными научными и инженерными кадрами, способными осуществлять разработку и внедрение но­вых технологий и поступательное развитие отрасли.

Приоритетным направлением электроэнергетики в современном обществе является энергосберегающая политика, которая ставит своей целью — ликвидировать потери энергоресурсов и повысить эффективность их использования на любом уровне. По данным исследований, около трети всех энергоресурсов тратится безвозвратно или расходуются крайне неэффективно на сегодняшний день.

Один из видов коммерческих потерь — хищение. Практик работы энергосберегающих организаций показывает, что масштабы этой проблемы приобретают очень важное значение в последние годы. До сих пор заинтересованные компании не проводили какие-либо меры по обнаружению или хотя бы оценке ущерба от хищения электроэнергии.

В условиях рыночной экономики, энергия это, прежде всего, товар. Его можно как купить, так и продать, а также присвоить. Последнее действие подпадает под определение — «хищение».

Хищению электроэнергии способствует специфика данного товара, которая заключается в том, что его производство, передача и использование — практически единовременный процесс. На всех этапах, этот товар почти невозможно сохранить. Завершающий этап реализации электроэнергии — поставка её потребителям, что и определяет коммерческую успешность энергосбытовых организаций.

Из-за большого объема электроэнергии, передаваемой круглосуточно, а также большого числа потребителей, при разных нагрузках, имеет место различия в результате измерения с помощью контрольных приборов и расчетной аппаратуры.

Указанные особенности процесса производства, передачи и сбыта электроэнергии, а также большое протяжение магистралей, распределительных сетей — создает удачную ситуацию для хищения электроэнергии.

В условиях роста энергоемкости экономики всего мира, большое внимание стоит уделять политике снижения коммерческих затрат электроэнергии в сетях, это один из основных потенциалов энергосбережения.

Сдерживать цену на электричество в будущем не представляется возможным, по ряду объективных причин. Из-за особенности структуры электроэнергии, потребители не могут влиять на её цену ни в оптовом плане, ни на розничном рынке. При этом из-за повышения расходов энергии в промышленности, возросла и нагрузка на частного потребителя энергии.

Рост энергопотребления в бытовом секторе вызывает перегрузку в питающих районы магистралях и трансформаторных подстанциях, что приводит к аварийным ситуациям и чревато пожарами, травмами и т.д. При хищении электроэнергии, часть мощностей является неучтенной, это приводит к повышению допустимой нагрузки и срабатыванию автоматической защиты в устройствах.

Сегодня возник ещё один важный фактор, побуждающий потребителей электрической энергии подключаться к сетям без разрешения на присоединение мощности, соответственно — без оформления договора технического присоединения к электросетям — это увеличенная стоимость за присоединенные мощности.

Развитие энергетики мира в начале XXI в. будет определяться комплексным воздействием многих экономических, природных, научно-технических и политических факторов. Оценка долгосрочного роста потребления энергии, основанная на предполагаемых темпах развития мировой энергетики, приводит к выводу, что среднегодовой прирост до 2030-2050 гг. составит, вероятно, 2-3%. В развивающихся странах он будет значительно большим. Учитывая прогнозируемый рост населения к 2025 г. до 8,5 млрд. чел., из которых 80% будут проживать в развивающихся странах, можно ожидать, что именно эти страны будут играть определяющую роль в мировом потреблении энергии. Это вызовет резкое увеличение ее производства. Увеличение производства электроэнергии повлечет за собой сильное загрязнение природной среды. Роль природного газа в энергоснабжении в перспективе будет возрастать, учитывая обширные запасы этого сырья, а также экологическую чистоту этого вида топлива.

Переход от нефти к газу — это третья энергетическая революция (первая — переход от дров к углю, вторая — от угля к нефти). Нефть в настоящее время стала замыкающим ресурсом в энергобалансе мира. Цены на нефть будут определять темпы перестройки структуры мирового энергобаланса. Полагают, что потребление в мире увеличится к 2030 г. почти до 8 млрд. тонн, так как все ТЭС угольные переоборудовать на нефть или газ очень дорого.

На Международной конференции по использованию энергетических ресурсов ( , 1989 г.) было достигнуто эффективное решение проблемы ядерной энергетики, увеличившее число сторонников ее развития во многих .

Напротив, в (провинция Онтарио) и объявлен мораторий на строительство новых АЭС. Серьезную озабоченность вызывают АЭС в Восточной Европе, хотя действующие в , Словакии АЭС относятся по своим показателям к лучшим в мире. Решаются проблемы безотходного использования природного урана как одноразового топлива, а также переработки и уничтожения радиоактивных отходов.

По-разному относятся во многих странах к использованию гидроэнергетических ресурсов. Крупные ГЭС планирует только Китай. До 2000 г. на реках Китая проектируется 60 крупных ГЭС суммарной мощностью 70 ГВт.

Наиболее перспективным направлением в производстве энергии предполагают использование солнечной энергии (фотоэлектричеекое преобразование) и температурного градиента океана для выработки электроэнергии, энергии ветра, геотермальной энергии, энергии горных пород и магмы, приливной энергии, топливных элементов, переработки древесины в жидкое топливо, переработки городских отходов, применение биогаза, получаемого при переработке отходов промышленности и сельского хозяйства. Лидируют в разработке этих технологий развитые страны, в первую очередь,

Страница 3 из 3

Развитие ЕЭС России осложняется рядом проблем, требующих своего решения в перспективный период.
Общий экономический кризис и перестройка финансовой системы страны затронули и электроэнергетику. Переход на самофинансирование при государственном регулировании тарифов на электроэнергию резко ограничил финансовые ресурсы электроэнергетики. Объемы инвестиций в отрасль сократились с 1990 по 1998 г. в 3 раза. В результате темпы ввода мощностей за 1991-1998 гг. снизились до 1,5 млн. кВт, а среднегодовые вводы электрических сетей за последние 15 лет уменьшились в 3 раза.

Одну из серьезнейших проблем в энергетике представляет старение основных фондов. В ОЭС России находится в эксплуатации 30 млн. кВт генерирующего оборудования, достигшего предельных сроков наработки. В 2010 г. объемы устаревшего оборудования составят порядка 110 млн. кВт (из них ТЭС - 75 млн., ГЭС - 25 млн., АЭС - 8,4 млн. кВт), т.е. около 50 % установленной мощности электростанций. Нарастание объемов оборудования электростанций, выработавшего свой парковый ресурс, намного превышает темпы вывода его из работы и обновления. Эта проблема стоит в электрических и тепловых сетях. Уже сейчас 5 тыс. км ВЛ 110-220 кВ и подстанций общей мощностью 8 млн. кВ-А подлежат полной замене. К 2010 г. потребуется реконструкция 20 тыс. км ВЛ 110 кВ и выше. Проблема технического перевооружения затрагивает основы надежности и живучести электроэнергетики всех регионов страны и Единой энергетической системы России в целом.
При сохранении существующего уровня инвестиций в электроэнергетику и большом объеме устаревшего оборудования уже с 2005 г, может начаться неуправляемое выбытие электромощностей и электросетевых объектов и, как результат, резкое снижение надежности функционирования ЕЭС и электроснабжения потребителей.
Важнейшей проблемой развития энергетики является внедрение современного эффективного оборудования с высокими технико- экономическими и экологическими параметрами, в том числе и для решения задач технического перевооружения. Необходимо ускоренное внедрение высокоэкономичных парогазовых и газотурбинных технологий на базе появляющегося отечественного оборудования, расширение связей с зарубежными фирмами по производству оборудования на совместных предприятиях, создание экологически чистых энергоблоков на твердом топливе, оборудованных котлами с циркулирующим кипящим слоем, реакторов АЭС нового поколения, отвечающих международным стандартам безопасности.
Проблемой ЕЭС России является частичная энергетическая зависимость отдельных регионов от транзита электроэнергии через энергосистемы других государств (Калининградская, Псковская, Омская энергосистемы).
Из-за недостаточной компенсации зарядной мощности линий 750 кВ - 75, при рекомендуемых 100-110 %, и 500 кВ - 42 против 80- 100% острейшей проблемой функционирования электрических сетей в последние годы является повышение рабочего напряжения в сетях 750, 500 и 330 кВ в ряде районов ЕЭС России, иногда до опасных для оборудования значений, весной-летом в ночные часы и в часы дневного провала нагрузок.
Появление вынужденных неоптимальных режимов работы электростанций, увеличение реверсивных перетоков мощности по электрическим сетям привели к повышению относительных потерь электроэнергии. В 1998 г. потери электроэнергии в электрических сетях Российской Федерации составили 90,3 млрд. кВт-ч, или 12,2% отпущенной электроэнергии в сеть, против 8,35 % в 1991 г. Возросла доля коммерческих потерь.
Главной текущей проблемой отрасли является низкий уровень платежей потребителей за отпущенную им электрическую и тепловую энергию.
Перспективы развития ЕЭС России. Основными задачами развития ЕЭС России в первую очередь являются:
сохранение интеграции электроэнергетических систем регионов России независимо от форм собственности и производственно-организационной структуры в электроэнергетике;
обеспечение эффективного использования топливно-энергетических ресурсов регионов страны с учетом экологических требований;
обеспечение эффективного функционирования ФОРЭМ, гарантирующего надежность поставок энергии энергодефицитным районам.

В разработанной «Схеме развития ЕЭС и ОЭС России на период до 2010 г.», в увязке с основными стратегическими направлениями развития топливно-энергетического комплекса страны, в «Энергетической стратегии России» и «Стратегии развития электроэнергетики России на период до 2015 г.», определены направления развития генерирующих источников и основной электрической сети ЕЭС и ОЭС России на период до 2010 г. в условиях формирования и функционирования общероссийского и региональных рынков мощности и электроэнергии; разработаны предложения по экспорту электроэнергии из России, дана оценка потребности электростанций ЕЭС и ОЭС России в топливе в условиях формирования рынка топливных ресурсов и воздействия электроэнергетики на окружающую среду; уточнена потребность в инвестиционных ресурсах для развития ЕЭС и ОЭС России и дана оценка перспективных тарифов на поставки мощности и электроэнергии на оптовом рынке для регулируемой и конкурентной форм организации рынка.
В Схеме было рассмотрено несколько вариантов развития электроэнергетики России на период до 2010 г., которые соответствуют различным вариантам развития экономики страны, и как следствие, различным вариантам спроса на электроэнергию, а также учитывают возможные изменения условий развития отрасли в перспективе. При максимальном варианте спроса на электроэнергию (1127 млрд. кВт-ч в 2010 г.) предполагается, что уровень электропотребления 1990 г. (1074 млрд. кВт-ч) по России будет Достигнут к 2008 г., при среднем и минимальном вариантах спроса (1025 и 930 млрд. кВт-ч в 2010 г.) - за пределами 2010 г.
Кроме того, в Схеме был рассмотрен «вариант максимального демонтажа устаревшего оборудования тепловых электростанций», в котором после 2000 г. все оборудование ТЭС, отработавшее свой ресурс, порядка 60 млн. кВт, подлежит демонтажу с последующей заменой на новое прогрессивное оборудование. В остальных, рассмотренных в Схеме вариантах техническое перевооружение ТЭС в период до 2010 г. осуществляется как путем демонтажа устаревшего оборудования (25 млн. кВт) и замены его на новое (19 млн. кВт), так и продления срока службы оборудования (48 млн. кВт). При этом демонтаж принимался для устаревшего оборудования ТЭС на низкие параметры пара, а продление ресурса службы для оборудования высокого давления (в том числе для конденсационного оборудования 13 МПа и выше и теплофикационного оборудования 9 МПа и выше).
Масштабы вводов генерирующих мощностей в период до 2010 г. в зависимости от рассматриваемых вариантов оцениваются в 32 млн. кВт в варианте, соответствующем минимальному уровню электропотребления, до 100 млн. кВт - в варианте максимальной замены оборудования, отработавшего свой ресурс.
Развитие генерирующих мощностей в рассматриваемой перспективе связано, в первую очередь, с проблемами обновления выработавших свой расчетный ресурс энергомощностей, повышением эффективности энергопроизводства за счет внедрения современных технологий (ПГУ, ГТУ, чистые угольные энергоблоки), повышением безопасности девствующих и новых АЭС.
Основным направлением развития гидроэнергетики в перспективный период является окончание строительства уже начатых ГЭС и техническое перевооружение действующих ГЭС. К гидроэлектростанциям, имеющим значительный строительный задел и соответственно возможности ускоренного ввода, относятся: Ирганайская, Зарамагская, Зеленчукские ГЭС (ОЭС Северного Кавказа), ГЭС на р. Кемь (ОЭС Северо-Запада), Богучанская ГЭС (ОЭС Сибири), Бурейская и Нижнебурейская ГЭС (ОЭС Востока), Вилюйская ГЭС-3 (Западная Якутия), Усть-Средиеканская ГЭС (Магадан).
Вводы мощности кв АЭС в этот период связаны с заменой Демонтируемых энергоблоков на Ленинградской, Кольской, Курской, Нововоронежской, Белоярской АЭС на энергоблоки нового поколения, завершением строительства Курской (блок № 5) и Тверской АЭС
(блок № 3), вводом в 2010 г. первого блока Приморской АЭС на Дальнем Востоке в максимальном варианте электропотребления.
Масштабы развития тепловых электростанций на органическом топливе будут в значительной мере определяться ростом спроса на электро- и теплоэнергию, возможностями развития топливной базы электростанций, постоянным ростом объемов устаревшего оборудования и принятой стратегией технического перевооружения, темпами развития отечественного машиностроения для производства эффективного и экологически чистого оборудования.
В условиях преимущественного использования природного газа наиболее целесообразно обеспечение газом ТЭЦ, особенно комбинированных парогазовых установок (ПГУ-ТЭЦ), что позволит наиболее эффективно решать одновременно вопросы электро- и теплопотребления.
В максимальном варианте рекомендованы вводы конденсационной мощности на следующих крупных ГРЭС. В ОЭС Северо-Запада - Псковская ГРЭС (окончание строительства); в ОЭС Центра - Каширская ГРЭС-4, Шатурская ГРЭС-5 и Конаковская ГРЭС (замена энергоблоков), Щекинская и Ивановская ГРЭС (расширение), Петровская и Нижневолжская ГРЭС на газе (новые); в ОЭС Поволжья - Заинская ГРЭС (замена) и Мордовская ГРЭС на КАУ (новая); в ОЭС Северного Кавказа - Краснодарская ГРЭС на газе (новая); в ОЭС Урала - Нижневартовская ГРЭС (энергоблок № 2) и Пермская ГРЭС (№ 4), Сургутская ГРЭС-1 (замена четырех энергоблоков); в ОЭС Сибири - Березовская ГРЭС-1 (окончание 1 очереди), Харанорская ГРЭС (ввод двух блоков), Гусиноозерская ГРЭС (доведение до проектной мощности), Красноярская ГРЭС-2 и Беловская ГРЭС (замена).
Российская электроэнергетика как сегодня, так и на перспективу ориентирована на газоугольную стратегию.
При принятой стратегии развития энергетики России структура установленной мощности электростанций в рассматриваемый период существенно не меняется: доля ГЭС остается на существующем уровне-21, несколько снижается доля АЭС - с 11 (1997 г.) до 10 %, доля ТЭС составит 68-69 %. При этом возрастет доля ПГУ и ГТУ (на КЭС и ТЭЦ) с 0,6 в отчетном 1997 г. до 8,1 % суммарной мощности в 2010 г.
В новых экономических условиях роль основной электрической сети ЕЭС России возрастает, так как она является базой для создания оптового рынка мощности и электроэнергии в России, который позволит в перспективе повысить конкуренцию производителей электроэнергии и снизить стоимость электроэнергии для потребителей.
На рассматриваемую перспективу высшим классом напряжения для сетей переменного тока останется 1150 кВ. Сеть 750 кВ будет развиваться в европейской части ЕЭС для повышения надежности выдачи мощности АЭС в ОЭС Северо-Запада и Центра, а также при Необходимости для усиления межсистемных связей России с Беларусью и Украиной.
Сети 500 кВ будут использованы для присоединения ОЭС Востока к ЕЭС России, усиления основных связей в ОЭС Северного Кавказа, Центра, Средней Волги, Урала, Сибири, Востока, а также для развития межсистемных связей между отдельными ОЭС.
Сеть 330 кВ продолжает выполнять системообразующие функции в ряде энергосистем и ОЭС европейской части России и обеспечивать, выдачу мощности крупных электростанций. В дальнейшем, по мере развития сети 750 кВ, к сети 330 кВ перейдут распределительные функции.
В период до 2000 г. развитие основной электрической сети связано, в первую очередь, с обеспечением энергетической независимости отдельных регионов России (энергосистем Псковской и Омской обл.), обеспечением надежной выдачи мощности электростанций и надежного электроснабжения потребителей, обеспечения экспорта электроэнергии в Финляндию.
В этот период рекомендуется сооружение основных электросетевых объектов, по которым имеются строительные или проектные заделы.
В период 2001-2010 гг. для усиления межсистемных связей в соответствии с требованиями к их пропускной способности предлагается:
создание прямой сильной электрической связи между восточной и европейской частями ЕЭС России путем сооружения линий электропередачи 500 и 1150 кВ, проходящих по территории России. Кроме сокращения потребности в генерирующей мощности и экономии затрат на топливо, они укрепят сетевую структуру ЕЭС, оказавшуюся в значительной мере нарушенной вследствие получения политической независимости Казахстаном. Сооружение первого участка ВЛ 1150 кВ Сибирь - Урал предлагается по трассе Алтай - Карасук - Омск - Курган - Челябинск;
усиление межсистемного транзита 500 кВ ОЭС Средней Волги - ОЭС Центра (Волгоградская энергосистема) - ОЭС Северного Кавказа (строительство ВЛ Балаковская АЭС - Курдюм - Фролово - Шахты), который позволит повысить надежность электроснабжения потребителей региона Северного Кавказа и создать основу для транспорта электроэнергии из региона Поволжья в страны Черноморского региона;
усиление системообразующих связей 500 кВ между ОЭС Урала и Средней Волги (за счет строительства ВЛ 500 кВ Северная - Вятка и Газовая - Преображенская - Красноармейская) с целью повышения пропускной способности межсистемного сечения и обеспечения сокращения за трат на ввод генерирующей мощности;
сооружение ВЛ 500 кВ Чита - Могоча - Зейская ГЭС, которая позволит увеличить обмены мощностью и электроэнергией между ОЭС Сибири и ОЭС Востока.
Для обеспечения надежного и устойчивого функционирования ЕЭС России объемы ввода электросетевых объектов 330 кВ и выше в период до 2010 г должны составить не менее 12-20 тыс. км линий электропередачи и 47,5-80 тыс. MB A мощности подстанций в зависимости от рассматриваемых вариантов.
При этом необходимые объемы капитальных вложений по вариантам развития ЕЭС России на период до 2010 г составят от 100 до 180 млрд. дол. США.
Важнейшее значение для развития электроэнергетики России имеет расширение интеграции ЕЭС России с энергосистемами зарубежных стран. В период до 2010 г. предполагается значительное увеличение экспорта электроэнергии.
В страны СНГ и Балтии передача электроэнергии может быть Значительно увеличена за счет использования пропускной способности существующих межгосударственных связен, которая составляет свыше 8 млн. кВт, что позволяет увеличить экспорт электроэнергии в 2,5-3 раза без дополнительного сетевого строительства.
Особый интерес для России в части возможного увеличения экспорта электроэнергии представляют северные страны, входящие в объединение NORDEL, с которыми Россия граничит непосредственно, и страны Центральной и Восточной Европы, входящие в объединение CENTREL, а также Болгария и Румыния, в которые до 1991 г. поставлялась электроэнергия в больших объемах из России, Украины и Молдовы и с которыми сохранились электрические связи 750-400-220 кВ.
В Финляндии в период до 2010 г. планируется достаточно большой рост электропотребления (30 млрд. кВт-ч за 15 лет), часть которого Должна покрываться импортом электроэнергии. Увеличение передачи из России может быть обеспечено при расширении вставки постоянного тока (ВПТ) в Выборге 2X355 МВт и сооружении новой связи 330/400 кВ с ВПТ 600 МВт Колэнерго - Финляндия. Всего в сторону Финляндии может передаваться от 6,0 млрд. кВт ч. Возможна передача части этой энергии транзитом в Швецию, в которой может возникнуть потребность импорта электроэнергии при выводе из эксплуатации АЭС.
В Норвегию до 2005 г. возможно увеличение экспорта до 0,3 млрд. кВт-ч от генераторов Борисоглебской ГЭС. В период до 2010 г может рассматриваться сооружение передачи 330/400 кВ Мурманск - Киркенесс с ВПТ в Киркенессе мощностью 200 -250 МВт и экспортом в Норвегию до 1,0 млрд. кВт-ч.
В страны Центральной и Восточной Европы; Польшу, Чехию, Словакию, Венгрию, Румынию, Болгарию - экспорт электроэнергии из России возможен только транзитом через электрические сети Украины и Молдовы с использованием существующих связей 750 - 400 - 220 кВ. Совместная работа всех перечисленных энергосистем может быть восстановлена при переходе на синхронную работу объединений UCPTE - CENTREL - ОЭС СНГ - ЕЭС России или при сооружении В1П на связях ОЭС Украины с энергосистемами соседних стран. Переход к синхронной работе потребует достаточно продолжительного времени, поэтому на первом этапе может рассматриваться установка одной - двух ВПТ мощностью по 600 МВт на ПС 750 кВ Западно- Украинская, Жешув (Польша) или Альбертирша (Венгрия). По расчетам на уровне 2005 г. возможна передача из России до западных границ Украины 1000 - 1200 МВт с одновременной передачей па Украину 800 - 1200 МВт. При необходимости увеличения потоков мощности потребуется усиление сетей на Украине. Экспорт электроэнергии в страны Центральной и Восточной Европы может составить от 2,0 до 6 млрд. кВт ч.

В страны Западной Европы, например Германию и Австрию, экспорт электроэнергии возможен через ОЭС Балтии, Беларуси и Украины и энергосистемы стран CENTREL. На северо-западе ОЭС Балтии и Беларуси не имеют тесных связей с западными странами.

В плане решения этой проблемы ведутся переговоры по созданию транзита Россия - Беларусь - Польша. Интернациональный коллектив специалистов России, Германии, Беларуси, Польши и стран Балтии изучает технико-экономические аспекты создания многоподстаицион- ной передачи постоянного тока ± 500 кВ Россия - Беларусь - Литва - Калининград - Польша - Германия (VEAG и PreussenEleklra) протяженностью около 2000 км. Пропускная способность передачи на первом этапе должна составить 2000 и на втором - 4000 МВт Начальную подстанцию в России намечено разместить а районе Смоленской ГРЭС. Предполагается сооружение первой очереди к 2010 г. с передачей из России в европейские страны до 10,0 млрд. кВт-ч,
В страны Ближнего Востока - Турцию, Иран экспорт электроэнергии из России возможен через энергосистемы Закавказских стран. При усилении связи с Закавказьем, с сооружением на уровне 2005 г. ВЛ 500 кВ Сочи - Сухуми, в Турцию может передаваться до 3 млрд. кВт-ч. Может также рассматриваться сооружение подводной кабельной линии через Черное море Джубга - Самсун протяженностью 360 км напряжением ±400-600 кВ с передачей 1000 МВт и 5,0-6,0 млрд. кВт-ч. Передача в Иран может осуществляться в небольших количествах - 0,2-0,3 млрд. кВт-ч через Азербайджан. Ключевым звеном в этой проблеме является восстановление полноценной параллельной работы ЕЭС России и ОЭС Закавказья на основе обеспечения надежности работы существующей горной ВЛ 500 кВ Центральная - Ингури ГЭС и завершения строительства В Л 500 кВ, проходящей по Черноморскому побережью.
Из восточной части России возможен экспорт в страны Азии - Монголию, Китай, Северную и Южную Корею, Японию. В Китае в связи с устойчивым ростом экономики ряд районов является дефицитным по электроэнергии, что предполагает возможность экспорта из России. Однако до последнего времени передача в Китай осуществлялась только из Амурской энергосистемы в небольших объемах в рамках приграничной торговли. В настоящее время выполняется технико-экономическое обоснование сооружения передачи Братск - Пекин ±600 кВ протяженностью 2500 км (через Монголию) с передачей мощности 2500 МВт и электроэнергии 5,0-18,0 млрд. кВт-ч. Если учесть высокую стоимость такой передачи, значительные объемы работ, при своевременном решении спорных проблем она может быть введена в работу не ранее 2004 - 2005 гг. Из ОЭС Востока возможно дальнейшее развитие приграничной торговли с передачей электроэнергии от подстанций 220-110 кВ, расположенных в зоне Транссибирской железной дороги, или сооружение линий большой пропускной способности, например ВЛ 500 кВ Бурейская ГЭС - Харбин. Энергетический потенциал ОЭС Сибири и возможности его развития в ОЭС Востока позволяют рассматривать экспорт в Китай в достаточно широком диапазоне.

Япония не располагает собственными топливно-энергетическими ресурсами, а растущая потребность в электроэнергии позволяет рассматривать Японию в качестве потенциального импортера электроэнергии из России.
Возможные объемы экспорта электроэнергии из России на 2005- 2010 гг. могут составить соответственно 38 и 45 млрд. кВт-ч в вероятном, 43 и 90 млрд. кВт-ч - в максимальном варианте.
В вероятном варианте учитываются ограничения в топливообеспечении электростанций в ЕЭС России, ограниченность средств на сооружение новых межгосударственных связей, платежеспособность стран-импортеров.
Анализ надежности работы ЕЭС России подтверждает эффективность предусматриваемых мер по развитию основной системообразующей сети ЕЭС в период до 2010 г. и по обеспечению надежности параллельной работы энергосистем и надежности электроснабжения потребителей.
Оценка величины межсистемного эффекта при переходе от изолированной работы энергосистем к работе в составе ЕЭС России показала, что изоляция энергосистем друг от друга приносит огромный ущерб - увеличивается потребность в установленной мощности приблизительно на 7 ГВт, увеличиваются затраты на топливо на 82 млн., ежегодные издержки возрастают на 330 млн. дол. в год.
Переходя к экономической части работы, следует отметить, что полученные особенно на перспективу 2005 - 2010 гг. прогнозные показатели весьма условны и могут характеризовать в большей мере лишь общие закономерности и тенденции развития. Это связано с неопределенностью информации относительно общего экономического положения России в перспективе.
Расчет капитальных вложений производился в основном пообъектно, особенно в части задельных и новых электрических станций. Учитывались также объемы модернизации и реконструкции энергетических мощностей, линии Электропередачи, подстанции, тепловые сети и другие потребности, включая природоохранные мероприятия.
Наибольшая доля инвестиций в период до 2010 г. (порядка 70 %) приходится на ввод мощности электростанций.
Структура источников инвестиций рассмотрена в двух вариантах. Первый - инвестиции полностью покрываются за счет собственных средств электроэнергетики, прежде всего амортизации (с учетом будущей переоценки основных фондов) и прибыли. Однако анализ показал, что более приемлемым является второй вариант, когда собственные средства РАО и АОэнерго составляют около 60%. Остальная часть средств должна быть получена за счет сторонних источников.
Реализация намеченных в Схеме направлений развития ЕЭС России сдерживается ввиду отсутствия закрепленных на длительный период решений по источникам формирования инвестиционных средств в отрасли.
Схема предлагается в качестве технической основы для поэтапного решения проблем обеспечения функционирования и развития электроэнергетики России.

Введение

Электроэнергетика – это комплексная отрасль хозяйства, которая включает в свой состав отрасль по производству электроэнергии и передачу ее до потребителя. Электроэнергетика является важнейшей базовой отраслью промышленности России. От уровня ее развития зависит все народное хозяйство страны, а так же уровень развития научно-технического прогресса в стране.

Специфической особенностью электроэнергетики является то, что её продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и по размеру (с учетом потерь) и во времени.

Представить себе жизнь без электрической энергии уже невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос, наш быт. Её специфическое свойство – возможность превращаться практически во все другие виды энергии (топливную, механическую, звуковую, световую и т.п.)

В промышленности электроэнергия применяется как для приведения в действие различных механизмов, так и непосредственно в технологических процессах. Работа современных средств связи основана на применении электроэнергии.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей.

Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую среду.


1. Значение электроэнергетики в экономике Российской Федерации

Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Электроэнергетика является основой функционирования экономики и жизнеобеспечения. Надежное и эффективное функционирование электроэнергетики, бесперебойное снабжение потребителей – основа поступательного развития экономики страны и неотъемлемый фактор обеспечения цивилизованных условий жизни всех ее граждан. Электроэнергетика является элементом ТЭК. ТЭК России является мощной экономико-производственной системой. Он определяющим образом влияет на состояние и перспективы развития национальной экономики, обеспечивая 1/5 производства валового внутреннего продукта, 1/3 объема промышленного производства и доходов консолидированного бюджета России, примерно половину доходов федерального бюджета, экспорта и валютных поступлений.

При развитии энергетики огромное значение придается вопросам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также каждого экономического района на перспективу.

Одним из принципов размещения электроэнергетики на современном этапе развития рыночного хозяйства является строительство преимущественно небольших по мощности тепловых электростанций, внедрение новых видов топлива, развитие сети дальних высоковольтных электропередач.

Существенная особенность развития и размещения электроэнергетики – широкое строительство теплоэлектроцентралей (ТЭЦ) для теплофикации различных отраслей промышленности и коммунального хозяйства. ТЭЦ размещают в пунктах потребления пара или горячей воды, поскольку передача тепла по трубопроводам экономически целесообразна лишь на небольшом расстоянии.

Важным направлением в развитии электроэнергетики является строительство гидроэлектростанций. Особенность современного развития электроэнергетики – сооружение электроэнергетических систем, их объединение и создание Единой энергетической системы (ЕЭС) страны.

2. Характеристика самых крупных тепловых и атомных электростанций

Тепловые электростанции (ТЭС). В России около 700 крупных и средних ТЭС. Они производят до 70% электроэнергии. ТЭС используют органическое топливо – уголь, нефть, газ, мазут, сланцы, торф. Тепловые электростанции ориентированы на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Электростанции, работающие на мазуте, располагаются преимущественно в центрах нефтеперерабатывающей промышленности. Крупными тепловыми электростанциями являются Березовская ГРЭС-1 и ГРЭС-2, работающие на углях Канско-Ачинского бассейна, Сургутская ГРЭС-1 и ГРЭС-2, Уренгойская ГРЭС – на газе.

Преимущества тепловых электростанций: относительно свободное размещение, связанное с широким распространением топливных ресурсов в России; способность вырабатывать электроэнергию без сезонных колебаний (в отличие от ГЭС). К Недостаткам относятся: использование невозобновимых топливных ресурсов; низкий КПД; крайне неблагоприятное воздействие на окружающую среду (тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200–250 млн. т золы и около 60 млн. т сернистого ангидрида; кроме того они поглощают огромное количество кислорода).

Атомные электростанции (АЭС). АЭС используют транспортабельное топливо. АЭС ориентируются на потребителей, расположенных в районах с напряженным топливно-энергетическим балансом или в местах, где выявленные ресурсы минерального топлива ограничены. Кроме этого, атомная электроэнергетика относится к отраслям исключительно высокой наукоемкости.

Доля АЭС в суммарной выработке электроэнергии в России составляет пока 12%, в США – 20%, Великобритании – 18.9%, Германии – 34%, Бельгии – 65%, Франции – свыше 76%.

Сейчас в России действуют девять АЭС общей мощностью 20.2 млн кВт: в Северо-Западном районе – Ленинградская АЭС, в ЦЧР – Курская и Нововоронежская АЭС, в ЦЭР – Смоленская, Калининская АЭС, Поволжье – Балаковская АЭС, Северном – Кольская АЭС, Урале – Белоярская АЭС, Дальнем Востоке – Билибинская АЭС.

Достоинства АЭС: их можно строить в любом районе; коэффициент использования установленной мощности равен 80%; при нормальных условиях функционирования они меньше наносят вред окружающей среде, чем иные виды электростанций; не поглощают кислород. Недостатки АЭС: трудности в захоронении радиоактивных отходов (д ля их вывоза со станции сооружаются контейнеры с мощной защитой и системой охлаждения; захоронение производится в земле на больших глубинах в геологически стабильных пластах); катастрофические последствия аварий на наших АЭС вследствие несовершенной системы защиты; тепловое загрязнение используемых АЭС водоемов. С экономической точки зрения ядерная энергетика специфична. Ей свойственны, по крайней мере, две кардинальные особенности. Первая особенность связана с большой ролью капиталовложений, которые вносят основной вклад в стоимость электроэнергии. Из чего следует необходимость особо тщательно и обоснованно учитывать роль капиталовложений. Вторая определяется спецификой использования ядерного топлива, которая существенно отличается от той, что присуща обычному химическому топливу. К сожалению, до сих пор не сложилось единого мнения о том, как следует учитывать эти особенности в экономических расчетах. На примере российской ядерной энергетики можно проанализировать вышеназванные особенности с точки зрения современных особенностей производства электроэнергии.

Несмотря на то, что экономические проблемы ядерной энергетики были обстоятельно изложены еще в монографии, тем не менее, существовавший до середины 80-х годов оптимизм в прогнозах ее развития определялся в основном представлениями об умеренной капиталоемкости АЭС, зачастую продиктованными соображениями политического плана.

Известно, что удельные капиталовложения в АЭС значительно выше, чем в обычные электростанции, особенно это касается АЭС с быстрыми реакторами. Это связано в первую очередь со сложностью технологической схемы АЭС: используются 2-х и даже 3-х контурные системы отвода тепла из реактора.

Создается специальная система гарантированного аварийного расхолаживания.

Предъявляются высокие требования к конструкторским материалам (ядерная чистота).

Изготовление оборудования и его монтаж ведутся в особо строгих, тщательно контролируемых условиях (реакторная технология).

К тому же термический к.п.д. на используемых в настоящее время в России АЭС с тепловыми реакторами заметно ниже, чем на обычных тепловых станциях.

Другим важным вопросом является то, что в твэлах внутри реактора постоянно содержится значительное количество ядерного топлива, необходимого для создания критической массы. В некоторых публикациях \например по данным Батова, Корякина Ю.И., 1969 г.\, предлагается включать в капиталовложения стоимость первой загрузки ядерного топлива. Если следовать этой логике, то в капвложения следует включать не только топливо, находящееся в самом реакторе, но и занятое во внешнем топливном цикле. Для реакторов, использующих замкнутый цикл с регенерацией топлива, таких как быстрые реакторы, общее количество «замороженного» таким образом топлива может в 2–3 раза, а то и больше превышать критическую массу. Все это значительно увеличит и без того значительную составляющую капвложений и соответственно ухудшит расчетные экономические показатели АЭС.

Такой подход нельзя считать правильным. Ведь в любом производстве одни элементы оборудования находятся в постоянной эксплуатации, а другие материальные средства службы регулярно заменяются новыми. Однако, если этот срок не слишком велик, их стоимость не причисляют к капвложениям. Эти затраты учитываются в качестве обычных, текущих. В случае с твэлами в пользу этого свидетельствует период их использования, который не превышает нескольких месяцев.

Важным является также вопрос о цене ядерного топлива. Если речь идет только об уране, то его стоимость определяется затратами на добычу, извлечение из руды, изотопное обогащение (если таковое необходимо).

Если топливом является плутоний, который используется для быстрых реакторов, то в общем случае следует различать два режима: замкнутый, когда плутония достаточно для обеспечения потребностей развивающейся энергетики, и конверсионный, когда его не хватает и наряду с ним используется 235 U. Для случая конверсионного цикла цена плутония должна определяться из сопоставления с известной ценой 235 U. В любом быстром реакторе можно использовать как плутониевое, так и урановое топливо. Поэтому при экономическом сопоставлении влияния эффекта вида топлива на капитальную составляющую стоимости электроэнергии можно исключить. Достаточно приравнять между собой лишь непосредственные затраты на топливо (топливные составляющие) в том и другом случае. По оценкам специалистов цена плутония превосходит цену 235 U примерно на 30%. Для плутония это обстоятельство важно, поскольку нарабатываемый плутоний как побочный продукт приносит большой доход.